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The eigenvalues and eigenvectors of the dielectric matrix � provide a compact representation of the screen-
ing properties of interacting electronic systems. We have previously shown that the dielectric eigenvalue
spectrum may be efficiently computed by iterative linear-response calculations and that for nonmetallic sys-
tems � may be obtained through an eigenvalue-eigenvector decomposition where only a small number of
eigenvalues are included. Here we investigate the spectral properties of the dielectric matrices of a variety of
systems �solids, nanostructures, and molecules� as well as the convergence properties of the eigenvalue de-
composition of � as a function of the number of eigenmodes. Our results provide guidance on how to perform
practical calculations of dielectric matrices using iterative techniques.
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I. INTRODUCTION

Within the linear-response theory, the dielectric matrix
provides a complete representation of the electronic polariza-
tion and screening behavior of an interacting electronic sys-
tem subject to external perturbations. Calculation of dielec-
tric matrices is a key step in the determination of many
properties of solids and nanostructures, e.g., excited-state
and correlation properties. Particular applications of interest
are, for example, the evaluation of quasiparticle energies in

GW calculations1 and of several other spectroscopic
quantities2 and the determination of screening properties in
nanoscale electronic systems such as thin-film- or nanowire-
based transistors and high-k dielectric layers.3

Most evaluations of static dielectric matrices ��r ,r�� of
solids4–7 have been performed using the approach pioneered
by Adler8 and Wiser9 �AW� based on perturbation theory and
the random-phase approximation �RPA�. Using a plane-wave
representation, the Fourier transform of the static RPA dielec-
tric matrix of a nonmetallic system is given by7

�G,G��q� = �G,G� −
4�e2

�q + G�2
4

Nk�
�

k,v,c

�v,k�e−i�q+G�·r�c,k + q��c,k + q�ei�q+G��·r��v,k�
Ev,k − Ec,k+q

, �1�

where � is the volume of the unit cell, k and q are wave
vectors, and G�G�� denotes the reciprocal-lattice vectors.
Each matrix element of ��q� may be computed by perform-
ing the direct sum over single-particle conduction �c� and
valence �v� bands with Ec,k+q and Ev,k being the correspond-
ing orbital energies, and we refer to this approach as the
explicit summation approach �ESA�. According to Eq. �1�,
the cost to compute each matrix element scales as NkNcNv,
where Nk is the number of k points used in the Brillouin-zone
sampling and Nv �Nc� is the number of single-particle-
occupied �empty� states. In principle, Nc included in the sum
of Eq. �1� is infinite, however practical calculations of � have
been carried out by truncating the sum over the conduction
bands at a finite number. Calculations of � under the ESA
have also been extended7,10 beyond the RPA to include
exchange-correlation effects in the response. In addition to
the ESA so-called “direct” methods have been applied11–13 to
compute the dielectric response, where individual columns
of ��q� are obtained one at a time via the evaluation of the
response to applied plane-wave potentials.

Despite the wide use of the ESA in recent years, there are
technical issues that prevent its applicability to systems
whose description requires a high-energy cutoff and/or large
supercells. A major drawback of the ESA is that very large
Nc is usually required to converge the summation in Eq. �1�.
For instance, even in the case of molecules with few atoms,
in order to compute quasiparticle energies, typically about
1000 Kohn-Sham empty states are used to evaluate �.14,15 In
addition, in many applications one needs to compute a func-
tional form of � instead of � itself. For example, one wants to
compute �−1 in GW calculations and log��� in RPA
correlation-energy calculations16 using the adiabatic connec-
tion fluctuation-dissipation theorem �ACFDT�.17,18 This in-
volves expensive operations such as matrix inversion in the
former case and full diagonalization in the latter case.19

In a recent work,20 we have proposed a method for com-
puting � of a given system called the projective dielectric
eigenpotential method �PDEP�. In this approach, a finite
number of eigenmodes of � are obtained via an orthogonal
iteration procedure implemented within density functional
perturbation theory �DFPT�.21 For many classes of system,
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the PDEP method is expected to be significantly more effi-
cient than an ESA as long as a relatively small number of
eigenvalues and eigenvectors are needed to reconstruct the
full dielectric matrix with good accuracy. In this paper we
address in detail the convergence properties of the PDEP
method for several systems including bulk solids, nanostruc-
tures, and molecules. We also address efficiency issues of the
PDEP and ESA and provide guidance in the selection of
appropriate parameters for practical calculations.

The rest of the paper is organized as follows. In Sec. II we
describe the theoretical background to the PDEP method and
details of our current implementation. In Sec. III we present
calculations of dielectric eigenvalue spectra of several bulk
systems, nanostructures, and molecules. Sections IV and V
contain a discussion of the convergence properties of the
PDEP and ESA, respectively. Finally Sec. VI concludes our
paper.

II. THEORETICAL BACKGROUND

Although PDEP can be applied to compute the eigenval-
ues and eigenvectors of a general dielectric matrix,22 in the
following we focus our discussion on the zero-frequency
limit. The RPA dielectric matrix can be represented by an
eigenvalue-eigenvector decomposition, and we call the set of
eigenvalues the dielectric eigenvalue spectrum. While � is
not Hermitian, an Hermitian form �the so-called Hermitian
dielectric matrix �̃� can be obtained by a similarity transfor-
mation,

�̃G,G��q� =
�q + G�
�q + G��

�G,G��q� , �2�

and thus all eigenvalues of both �̃ and � are real. Further-
more, under RPA it can be shown6 that the eigenvalues of �
are greater than or equal to 1. In prior works the dielectric
eigenvalues of a number of systems, including bulk semicon-
ductors and simple molecules, have been obtained4–7,23 by
diagonalizing �̃.

The PDEP methodology instead uses an orthogonal itera-
tion procedure to find the eigenvalues ��i� and eigenvectors
�ṽi� of �̃ via repeated application of the �̃− I operator to a set
of trial potentials, where I is the identity operator. If we label
the dimension of �̃ as N, we have

�̃ = �
i=1

N

ṽi�iṽi
H = �

i=1

N

ṽi��i − 1�ṽi
H + I . �3�

In practice, the summation is truncated at Neig�N and Neig
has to be chosen carefully to ensure the desired numerical
accuracy.

The action of �̃ on any arbitrary potential can be evaluated
using DFPT. Within the linear-response regime �= I−vc�0,
where vc is the Coulomb kernel and �0 is the irreducible
polarizability describing the response of the charge density
n�r� to the perturbation of the self-consistent field, i.e., �n
=�0�VSCF. The response to the external field is given by
�n=��Vext, where the reducible polarizability � satisfies
Dyson’s equation �=�0+�0�vc+ fxc��. The exchange and
correlation kernel fxc is set at zero within the RPA, and one

has �−1= I+vc�. It is convenient to express �n in terms of the
variation in occupied Kohn-Sham orbitals �	v�r�. Keeping
only terms linear in �	v�r�, we have

�n�r� = 4 Re�
v

	v
��r��	v�r� . �4�

Finally �	v�r� can be obtained by solving the linear
system21

�HSCF + 
Pv − Ev���	v� = − Pc�VSCF�	v� , �5�

where HSCF= p2

2m +VSCF is the unperturbed Kohn-Sham
Hamiltonian and Pv �Pc� is the projector onto the occupied
�empty-�state manifold. The value of 
 is chosen such that
the left-hand side of Eq. �5� is nonsingular. The application
of Eqs. �4� and �5� to periodic systems is discussed in detail
in Ref. 21.

As Eqs. �4� and �5� allow us to compute the charge-
density response �n from �VSCF, the action of �− I on any
trial potentials can be obtained conveniently as ��− I��VSCF
=−vc�0�VSCF=−vc�n. Finally, ��̃− I��VSCF is associated to
��− I��VSCF through the connection in Eq. �2�. Alternatively,
one may consider to apply the DFPT on � through ��−1

− I��Vext=vc��Vext=vc�n, where �Vext are treated as trial
potentials. However, this route requires a self-consistent con-
struction of �VSCF in Eq. �5� which, from a computational
standpoint, is more demanding than the previous procedure.
For this reason, the dielectric eigenvalue spectra are com-
puted from �0 instead of � in the PDEP approach. Once the
response ��̃− I��VSCF are solved, one may apply an orthogo-
nal iteration procedure to obtain �i and ṽi. It is important that
such a procedure is applied to �̃ and not to � itself since � is
not Hermitian and therefore its eigenvectors are in general
not orthogonal.

To compute the leading Neig eigenmodes �with the highest
Neig eigenvalues� of �̃, we begin with a set of initial trial
potentials and iteratively apply the �̃− I operator. Ritz
acceleration24 is employed in the orthogonal iteration proce-
dure, which provides faster convergence than the bare or-
thogonal iteration in situations where the density of eigen-
values becomes high in the region of interest. In principle the
initial trial potentials may be any set of mutually orthogonal
potentials provided that none is orthogonal to the subspace
spanned by the first Neig eigenpotentials. In practice we find
that initial potentials composed of the product of plane
waves and n�r�, plus a small amount of random noise, work
efficiently.

It has been shown that20 the computational effort for cal-
culating �̃ with Neig eigenmodes scales as NeigNpwNv

2, where
Npw is the size of the wave-function basis set. This compares
favorably with the scaling of Npw

2 NvNc in the ESA, particu-
larly for systems requiring large basis sets and/or large unit
cells. We note that the PDEP method can be parallelized very
efficiently by carrying out the calculations of different eigen-
modes on different processors.
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III. DIELECTRIC EIGENVALUE SPECTRA OF SOLIDS,
MOLECULES, AND NANOSTRUCTURES

In the following we analyze the dielectric eigenvalue
spectra and convergence properties of several systems, as
obtained with the PDEP technique. In particular, we study
three bulk solids: silicon �two-atom, eight-atom and 64-atom
unit cells�, diamond carbon �eight-atom unit cell�, and NaCl
�eight-atom unit cell�; three isolated molecules: H2O, ben-
zene, and Si5H12; and two nanostructured materials, a 1.1 nm
hydrogen-terminated silicon slab �Si16H8� and a 1.2 nm
hydrogen-terminated silicon nanowire �Si30H26�.

The ground-state properties were obtained using the pro-
gram PWSCF in the QUANTUM-ESPRESSO package25 and the
PDEP calculations were performed based on a modified ver-
sion of the “PHONON” code in the same package. Plane-wave
basis sets were used throughout with cutoffs of 12 Ry for the
silicon/hydrogen systems, 50 Ry for the carbon systems, 60
Ry for the systems containing oxygen, and 40 Ry for the
NaCl system. The Brillouin-zone sampling was done as fol-
lows: we used 64 k points in the full Brillouin zone for each
of the eight-atom Si, C, and NaCl unit cells and kept the
same effective density of k points for each of the other peri-
odic or semiperiodic structures considered in this work. This
amounts to using 256 k points for the two-atom bulk Si cell,
4 k points for the 64-atom Si cell, and 4 and 16 k points
respectively for the nanowire and nanoslab geometries.26

Although the PDEP method can be applied to �̃�q� at
arbitrary q, in this paper we focus on cases where q→0. We
chose q in the plane in the nanoslab calculation and along the
growth direction in the nanowire calculation. Except when
noted otherwise, we consider the iterative procedure con-
verged when the relative error in eigenvalues ���i /�i� in two
successive PDEP iterations is less than 10−6.

A major advantage of PDEP in computing the full �̃ ma-
trix is based on the assumption that Neig�Npw. In order to
achieve a high accuracy, this requires that the quantity ��i
−1� decays very rapidly to zero as i increases. In this section,

we investigate the dielectric eigenvalue spectra of a wide
variety of systems and show that indeed this assumption is
well justified.

The dielectric eigenvalue spectra of silicon-based materi-
als �bulk silicon, a slab, and a nanowire� are shown in the
inset of Fig. 1. The PDEP results for bulk silicon are in very
good agreement with previous ESA calculations.6,7,20 We first
consider the bulk spectra obtained from different unit cells.
For each system, the total number of dielectric eigenmodes is
Npw. At a given kinetic-energy cutoff Npw��, where � is
the volume of the unit cell. The inset of Fig. 1 clearly shows
that the larger the �, the slower the decay rate. For the pur-
pose of comparison, it is therefore more convenient to res-
cale the eigenmode index so that it becomes � independent.
As �= 4

3�rs
3 �2Nv�, where rs is the Wigner-Seitz radius, a

natural choice is to use a running index i /Nv. As we can see
in Fig. 1 the dielectric spectra of Si-based systems fall ap-
proximately on the same curve after the rescaling of the
eigenmode index.

The use of the rescaling adopted for bulk systems in the
case of nanostructures is not straightforward since the super-
cell contains an arbitrary amount of empty space, and con-
sequently � is not well defined. However one may introduce
an effective unit-cell volume assuming an average rs to be
the same as in bulk Si, i.e., �eff=

4
3�rs

3 �2Nv�. When the
index for nanostructures is scaled in the same way as in the
bulk, all the dielectric spectra of Si-based systems show the
same decaying behavior, as demonstrated in Fig. 1.

The convergence properties of PDEP regarding Neig is re-
lated to the decay behavior of the dielectric eigenvalue spec-
tra at large i. In order to approximately characterize the tail
of spectra for solids, we consider the Lindhard dielectric
function27 of the homogeneous electron gas. Thus one has
��q�−1�1 /q2 in the long-wavelength limit and ��q�−1
�1 /q4 for q�kF, where kF is the Fermi wave vector. Unlike
the response function of the homogeneous electron gas,
which is diagonal in reciprocal space, �̃ of real solids has
off-diagonal matrix elements due to so-called “local-field ef-
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FIG. 1. �Color online� Dielectric eigenvalue spectra of bulk sili-
con and silicon nanostructures. �i denotes the eigenvalues of the
dielectric matrix, and the eigenmode index i is scaled by Nv, the
number of valence states. The unscaled curves are shown in the
inset.
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FIG. 2. Tail of the dielectric eigenvalue spectrum of bulk silicon
�two-atom cell�. The full spectrum is given in the inset. A fit to the
data is provided, based on the Lindhard dielectric function �see
text�. Labels i, �i, and Nv have the same meaning as in Fig. 1.
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fects.” As a consequence the dielectric eigenvalues are in
general different from the diagonal-matrix elements of �.
However, for perturbations with very large Fourier compo-
nents, local-field effects usually become less relevant. There-
fore we approximate the tail of the spectra by a Lindhard
function to obtain ��i−1�� i−4/3, where i�G3 for sufficiently
large i. Figures 2–4 show the tail of the eigenvalue spectra
for three different solids: silicon, NaCl, and diamond. These
systems are chosen as representative semiconducting and in-
sulating systems, with different types of bonding �covalent
and ionic�. Since we have shown that all the silicon spectra
studied here have very similar decay behavior with proper
scaling �see Fig. 1�, here we only show the results of the
two-atom Si cell. A common feature in Figs. 2–4 is that the
spectra �inset� initially decay very rapidly and then flatten
out as i increases. From fitting the tail of the dielectric eigen-
value spectra, we found that the i−4/3 decay law is roughly

obeyed in all the three systems �with powers of 1.47, 1.49,
and 1.36 for Si �rs=3.16�, NaCl �rs=3.31�, and C �rs
=2.07�, respectively�.

The dielectric eigenvalue spectra of three molecular sys-
tems, H2O, benzene, and Si5H12, are shown in Fig. 5. Similar
to the nanostructures discussed above, the indices are scaled
by Nv. We find the overall decay behavior is similar to that of
solids and nanostructures, namely, a very rapid decay fol-
lowed by a slow decline, although the decay behavior shows
more significant diversity. It suggests that the eigenvalue-
eigenvector decomposition method may be advantageous
also in the case of molecular systems.

In this section we have demonstrated the existence of
similar decay behavior in the dielectric eigenvalue spectra of
several systems regardless of composition, size of band gap,
or periodicity. The dielectric eigenvalue spectrum is largely
dependent on the size and average electronic density of the
system. This is a very important prerequisite for the applica-
bility of the PDEP technique. However, in order to under-
stand the utility and efficiency of the approach, one needs to
know in practice how many eigenmodes are needed to com-
pute properties of interest. Although it is not our goal to
provide an exhaustive answer to this question, we provide
several examples showing that rapid convergence of some
excited-state and correlation-energy properties can be
achieved by using a rather small number of eigenvectors and
eigenvalues in Eq. �3�. This is the subject of Sec. IV.

IV. CONVERGENCE PROPERTIES
OF THE PDEP METHOD

In this section, we use the quasiparticle band gap and the
RPA correlation energy of bulk silicon as examples to inves-
tigate the convergence of the eigenvalue-eigenvector decom-
position of the dielectric matrix with respect to Neig. In the
first case, the quasiparticle direct gap of silicon was com-
puted at the � point using the GW approximation1 and the
von der Linden and Horsch plasmon-pole model.28 The de-
pendence of the gap on Neig is shown in Fig. 6�a�, where it is
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FIG. 3. Tail of the dielectric eigenvalue spectrum of bulk NaCl.
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based on the Lindhard dielectric function �see text�. Labels i, �i,
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seen that only a small number of eigenmodes are needed
�about 25� to reach an accuracy of 0.1 eV. A similar trend has
also been found in quasiparticle calculations of liquid water
and ice Ih.23 As a second example, we have computed the
RPA correlation energy of bulk silicon at different lattice
constants �a=9.6 and 11.0 a.u.� using the ACFDT. This re-
quires generalizing the linear-response equation to imaginary
frequencies and using more sophisticated iterative proce-
dures to obtain the eigenvalues of the dielectric matrix than
at �=0. Details of these generalizations will be given else-
where. Absolute energies, shown in the insets of Fig. 6�b�,
decay rather quickly and flatten out around Neig	50, while
the energy difference shows an even weaker dependence on
Neig and appears to be converged for Neig�25.

To assess the numerical error of the eigenvalue-
eigenvector decomposition of �̃ as a function of Neig, we
define ��̃ as the difference between the exact dielectric ma-
trix and the approximate one constructed from Neig eigen-
modes and introduce two formal measures of the error on
unconverged results: �1� the two norm of ��̃, i.e., 
��̃
2

= ��ij��̃i,j
2 �1/2; �2� the infinity norm of ��̃ defined as the larg-

est element of ���̃i,j�.
In Fig. 7, we plot the two norm and infinity norm of ��̃ of

bulk silicon �the eight-atom cell� as a function of Neig. To
obtain the exact dielectric matrix, one needs about 750
eigenmodes. Since �i−1 drops quickly toward zero as a
function of i, we instead use 256 eigenmodes ��256−1
=0.05 as compared to �1−1=13.75� to approximate the ex-
act dielectric matrix. The magnitude of both norms decreases
steadily as i increases and the onset of convergence around
Neig=50 is consistent with the results reported in Fig. 6 al-
though the GW gap and the correlation-energy differences
computed here appeared to be well converged even for Neig
less than 50.

V. CONVERGENCE PROPERTIES OF THE ESA

When �̃ is obtained from ESA, one needs to check con-
vergence of the results with respect to Nc included in the
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summation of Eq. �1� and the energy cutoff used to represent
the matrix. In many calculations in the literature, �̃ is repre-
sented by using a smaller basis set than that employed for the
representation of the Kohn-Sham wave functions. This is of-
ten necessary due to memory requirements and prohibitive
CPU requirements in inverting dielectric matrices with di-
mension larger than approximately 10 000.

We first check the convergence with respect to Nc by
comparing the dielectric eigenvalue spectra computed using
Eq. �1� to those obtained by the PDEP method for the eight-
atom bulk silicon system. The same Kohn-Sham ground state
was used in both calculations. The results in Fig. 8 are plot-
ted on a logarithmic scale in order to emphasize the differ-
ences. As one can see the ESA results gradually converge to
the PDEP ones as Nc is increased, and the rate of conver-
gence is in general faster for highest-lying eigenvalues.

As mentioned above, in ESA �̃ is often computed from a
basis set smaller than that of the single-particle wave func-
tions. In the following we investigate the effect of truncating
the size of the �̃ matrix in G space. We consider once again
the eight-atom Si cell; since this system is sufficiently small,
we can easily calculate the full �̃ matrix with the 12 Ry
cutoff used for the wave functions. In Fig. 9 we plot the
difference between the eigenvalues generated in the ESA
with a 12 Ry cutoff and those generated with 4, 6, 8, and 10
Ry. Except for the smallest cutoff �4 Ry� ��i are almost
constant as a function of i, and for Ecut�8 Ry the absolute

value of these differences appear to be rather small. These
results may provide a justification, a posteriori, of the rela-
tively small cutoff used in the literature to evaluate dielectric
matrices in those systems.

VI. CONCLUSIONS

In this paper we have discussed a technique to compute
iteratively the dielectric eigenvalue spectra of interacting
electronic systems and thus to provide an eigenvalue-
eigenvector representation of dielectric matrices. This tech-
nique, which we referred to as PDEP, is based on the solution
of the linear-response equation within density-functional per-
turbation theory and does not require lengthy calculations of
single-particle empty states nor the inversion of dielectric
matrices. The efficiency of the PDEP approach compared,
e.g., to explicit summation approaches, relies on the assump-
tion that only a relatively small number of eigenvectors and
eigenvalues are needed to provide an accurate representation
of the dielectric matrix. We have presented calculations of
dielectric spectra for representative solid, nanostructured,
and molecular systems and we have shown that they all ex-
hibit fast decays of the eigenvalues toward unity, thus pro-
viding a justification for the use of the PDEP approach at
least for the classes of systems studied here. In addition, we
have presented representative GW and correlation energy
calculations for Si showing that for practical purposes the
convergence of PDEP as a function of the number of eigen-
modes is even faster than that predicted by the decay of
dielectric spectra, and that very accurate results may be ob-
tained just by reconstructing the dielectric matrix using as
few as 30–50 eigenpotentials. These results are consistent
with those obtained by detailed analysis of two-norm and
infinity-norm convergence tests conducted on representative
dielectric matrices. Our findings show that PDEP is a prom-
ising technique to compute dielectric-matrix spectra for sys-
tems requiring large basis sets and/or large supercells and
that can be efficiently employed in, e.g., excited-state and
correlation-energy calculations.
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